Code Complete 2:
Realities of Modern
Software Construction

WWW.CONStrux.com

© 2004-2005 Construx Software Builders, Inc.
All Rights Reserved.

Construx

Delivering Software Project Suc

CODE
COMPLETE

STEVE McCONNELL

i Prachcal

CODE -
COMPLETER e

STEVE McCONNELL

i Prachcal

CODE Really,Retitty
COMPLETE o

STEVE McCONNELL

DA VINC)
CODE

...——fr""(/

g
b .»,'v, ///_yr @/

; .z"J,{ T 73
.A‘zz}f'r:/.«{/ff’,ﬁd'r/'ﬁ 'J:Z?'éf-:'f:-' :

steve McCGonnell

— .

CODE

STEVE McCONNELL

Code Complete Mission

<+ Attempt in 1993 was to capture lasting
knowledge of software construction

<+ I've asserted for many years that 95% of
the content of CC1 is still relevant

< Was this true?

consulting @ training € software projects € construx.com

Scope of Work for CC2

<+ Formally inspected entire first edition

<+ ~500 programming examples updated to
Java, VB, C++

<+ New chapters on Design, Classes,
Defensive Programming, Collaborative
Construction, Refactoring

<+ O0 & web Iintegrated throughout
<+ Further Reading updated throughout

<« Numerous complementary resources on
companion website cc2e.com

consulting @ training € software projects € construx.com

Overview of Talk

< The Worst Construction Ideas of the 1990s
and 2000s

<+ A Decade of Advances in Software
Construction

< Ten Realities of Modern Software
Construction

consulting @ training € software projects € construx.com

The Worst
Construction ldeas of

the 1990s and 2000s

Some of the Worst
Construction Ideas of 1990s

<+ Code & fix
<+ “All design up front” programming
<+ Design for speculative requirements

<+ Components will solve all our
construction problems

<+ Automatic programming
<+ Uninformed use of the waterfall model
< Calling everything “object oriented”

consulting @ training € software projects € construx.com

Some of the Worst
Construction Ideas of 2000s

<+ Code & fix
<+ “No design up front” programming
<+ Planning to refactor later

<+ Offshore outsourcing will solve all our
construction problems

<+ Automatic programming
<+ Uninformed use of Extreme Programming
<+ Calling everything “agile”

consulting @ training € software projects € construx.com

Worst Ideas, 1990s vs. 2000s

1990s 2000s
Code & fix % Code & fix

“All design up front” <+ “No design up front”
programming programming

» Design for speculative <+ Planning to refactor later
regquirements

Components will solve all < Offshore outsourcing will
our construction problems solve all our problems

Automatic programming < Automatic programming

Uninformed use of the < Uninformed use of
waterfall model Extreme Programming

Calling everything “object <« Calling everything “agile”
oriented”

consulting @ training € software projects € construx.com

A Decade of Advances
IN Software

Construction

0. With the Theatrical Release
of Lord of the Rings ...

<+ ALL companies can have servers named
Gandalf and Frodo

consulting @ training € software projects € construx.com

1. Design has Been Raised a
Level

<+ Programming has advanced through
ability to create larger code aggregations
¢ Statements
+ Routines
¢ Classes
¢ Packages

<+ Real legacy of OO might well be larger
aggregations

consulting @ training € software projects € construx.com

2. Daily Build and Smoke Test

< Institutionalizes incremental integration

<+ Minimizes serious integration problems
that used to be common

<+ Lots of other benefits, too

consulting @ training € software projects € construx.com

3. Standard Libraries

<+ Good programmers have always used
libraries

<+ Now provided with languages (Java, C++,
NET)

consulting @ training € software projects € construx.com

4. \Visual Basic

<+ Visual programming innovation

<+ The first development environment to
make widespread use of COTS
components

<+ Only language to learn Ada’s syntax
lessons (case statements, control
statements, etc.)

<+ Highly integrated environment

consulting @ training € software projects € construx.com

5. Open Source Software

<+ Great aid to programmers during
development

<+ Reduced barriers to making code available
<+ Opportunity to learn from available code

<+ Improved ability to read code

<+ Nice “community” of programmers

consulting @ training € software projects € construx.com

6. The Web for Research

<+ FAQS
< Discussion groups
< Searchability in general

consulting @ training € software projects € construx.com

/. Widespread Use of
Incremental Development

<+ Concepts were well known in 1990s
<+ Practice is well established in 2000s

From CC1.:

“The word ‘incremental’ has never achieved the
designer status of ‘structured’ or ‘object-oriented,’ so
no one has ever written a book on ‘incremental
software engineering.’ That’s too bad because the
collection of techniques in such a book would be
exceptionally potent.”

consulting @ training € software projects € construx.com

8. Test-First Development

<+ Shortens time to defect detection
<+ Increases personal discipline
<+ Complements daily build & smoke test

consulting @ training € software projects € construx.com

9. Refactoring as a Discipline

<+ Provides a discipline for making changes
+ Not so good as a total design strategy

<+ Good example of incrementalism

consulting @ training € software projects € construx.com

10. Faster Computers

<+ Compare CC1 performance benchmarks to
CC2 benchmarks

ications for optimization
ications for programming languages
ications for development

consulting @ training € software projects € construx.com

Ten Realities of
Modern Software

Construction

1 -
“Construction” I1Is a

Legitimate Topic

Software “Construction” —
Used to Look Like This

Software
Concept

—+

consulting

Requirements [,
——1 Analysis

Archltecturaj
Design

b

Detailed
Design

training

—+

CODE
COMPLETE

Coding and
Debugging

J@:

software projects

System
Testing

construx.com

Software “Construction” —
Now Looks Like This

Problem
Definition Detai Ied
. Corrective
Requirements DeS | g N Maintenance
Development

Coding and Integration
Construction i
Planning Debugging

Integration

Testing
Software
Archltecture
System
Testlng

consulting @ training € software projects € construx.com

Distinction Between Activities
and Phases

<+ Activity != Phase

<+ Talking about “Construction” as an
activity does not imply a distinct phase

< Differentiating between kinds of activities
IS extremely helpful

consulting @ training € software projects € construx.com

D
Individual Variation Is

Significant

Where do Variations Exist?

Researchers have found variations ranging from
10x to 28x in:

Coding speed

Debugging speed

Defect-finding speed

Percentage of defects found

Bad-fix injection rate

Design quality

Amount of code generated from a design
Etc.

L/
0.0

e

*

e

*

J
0‘0

J
0‘0

L/
0.0

e

*

X/
0‘0

consulting @ training € software projects € construx.com

Key Skills of an Expert
Programmer

Designing

Flushing out errors and ambiguities in
reguirements

Coding (naming, formatting, commenting)
Reading & reviewing code

Integration

Debugging

Unit testing

Teamwork

Using tools for all of the above

o0

L/ J J X/
< 0.0 0‘0 0‘0 0‘0

J/

*

e

*

consulting @ training € software projects € construx.com

_3-
Personal Discipline

Matters

Why Personal Discipline
Matters

<+ Being realistic about predicting the future

<+ Areas where discipline matters
+ Refactoring
¢ Prototyping
¢ Optimization
¢ Minimal-complexity designs specifically
¢ Managing complexity generally
<+ Endpoints—Discipline and Courage
¢ Humphrey on PSP
¢ Beck on Extreme Programming

consulting @ training € software projects € construx.com

_A-
A Focus on Simplicity
Works Better than a

Focus on Complexity

Simplicity vs. Complexity

<+ Why do projects fail?

<+ Focus on read-time convenience, not
write-time convenience

<+ YAGNI and design for speculative
requirements

consulting @ training € software projects € construx.com

-5-
Defect-Cost Increase

IS Alive and Well

2

Defect Cost Increase

to Fix Here

Activity in which a
Defect Is
Introduced

rverage
Cost to

Requirements Y .)\/ N b Ccrrect
Architecture \ A ')// /
N 7),)
- \\
Constructlon\ \ S S - \

Requirements Architecture Construction System test Post-Release

Activity in Which a Defect Is Detected

consulting @ training € software projects € construx.com

Decades of Research Support
Defect-Cost Increase

Fagan, Michael E. 1976. “Design and Code Inspections to Reduce Errors in Program
Development.” IBM Systems Journal 15, no. 3: 182-211.

Humphrey, Watts S., Terry R. Snyder, and Ronald R. Willis. 1991. “Software Process
Improvement at Hughes Aircraft.” IEEE Software 8, no. 4 (July): 11-23.

Leffingwell, Dean, 1997. “Calculating the Return on Investment from More Effective
Requirements Management,” American Programmer, 10(4):13-16.

Willis, Ron R., et al, 1998. “Hughes Aircraft's Widespread Deployment of a Continuously
Improving Software Process,” Software Engineering Institute/Carnegie Mellon University,
CMU/SEI-98-TR-006, May 1998.

Grady, Robert B. 1999. “An Economic Release Decision Model: Insights into Software
Project Management.” In Proceedings of the Applications of Software Measurement
Conference, 227-239. Orange Park, FL: Software Quality Engineering.

Shull, et al, 2002. “What We Have Learned About Fighting Defects,” Proceedings, Metrics
2002. IEEE; pp. 249-258.

Boehm, Barry and Richard Turner, 2004. Balancing Agility and Discipline: A Guide for the
Perplexed, Boston, Mass.: Addison Wesley, 2004.

consulting @ training € software projects € construx.com

_6-
Design Is Important

Design Advice—What has
Changed in 10 Years?

<+ In 1990s, design pundits wanted to dot
every | and cross every t before writing
any code

<+ In 2000s, design pundits say BDUF?
YAGNI!

<+ There are lots of valid points on the “no
design”—"all design” continuum

<+ The only 2 points guaranteed to be wrong
are the two that have been advocated!

consulting @ training € software projects € construx.com

General Point: Extremes are
Usually Not Productive

<+ All design up front vs. no design up front
<+ Entirely planned vs. entirely improvised
< Pure iterative vs. straight sequential

< All structure vs. all creative

<+ Document everything vs. document
nothing

consulting @ training € software projects € construx.com

iy
Technology Waves
Affect Construction

Practices

Effect of Technology Waves on
Construction

< Definition of “technology wave”
¢ Early-wave characteristics
¢ Mature-wave characteristics
¢ Late-wave characteristics

< Construction is affected by technology—
more than | thought (doh!)

<+ Technology can be addressed in terms of
general principles

consulting @ training € software projects € construx.com

_8-
Incremental

Approaches Work Best

Perspective on Incrementalism

<+ The pure waterfall model is not at all incremental
or iterative—which is why it hasn’t worked very
well

<+ Spiral development is highly incremental and
iterative, which is part of why it does work well

<+ All projects will experience iteration at some
point
<+ Think about where and when in your project you

will get your incrementalism—cheaply, or
expensively?

consulting @ training € software projects € construx.com

_O-
The Toolbox Metaphor
Continues to be

[Hluminating

Toolbox Metaphor

<+ What’'s best? Agile? XP? Scrum? DSDM? CMM?

<+ Toolbox explains there’s no one right tool for
every job

<+ Different industry segments will have different
tools and even different toolboxes

<+ What’s in the Software Engineering Toolbox?
¢ Best practices
¢ Lifecycle models
¢ Templates, checklists, patterns, examples
¢ Software tools

consulting @ training € software projects € construx.com

-10-
Software’s Essential

Tensions Remain

Software’s Essential Tensions

<+ Software’s essential tensions have remained
unchanged for years:
Rigid plans vs. Improvisation
Planning vs. Fortune Telling
Creativity vs. Structure

Quantitative vs. Qualitative
Process vs. Product

2

4

L 4

¢ Discipline vs. Flexibility

L 4

2

¢ Optimizing vs. Satisficing

<+ Balance wavers, but basic tensions are constants

consulting @ training € software projects € construx.com

ALK
I}IIMPl

= (/
b /y, ////_yr f/

; .z"J,{ T 73
A:;;;}/,/xff,cy'ﬁ)ﬁ/;‘f

steve McCGonnell

—

Construx

Delivering Software Project Success

“* Training
*» Software Projects

“*»Coaching & Consulting

*Info@construx.com
S WWW.construx.com

consulting @ training € software projects € construx.com

