

Troy Magennis (@t_magennis)
Moneyball for Software Projects:
Agile Metrics for the Metrically Challenged


2


## Brad Pitt

Paul DePodesta



Billy Beane

Jonah Hill (Playing fictional char.)



Earnshaw Cook Percentage Baseball (1964)


Alan Schwarz
The Numbers Game (History of Sabremetrics)
the signal and th and the noise the noise and the noise and the noi why so many predictions failbut some don't
and the noise ani the noise and the
nate silver noise
ninfirn simbuth ol mann
The Signal and the Noise: Why So Many Predictions Fail but Some Don't

## Season Win Percent vs. Relative Payroll

Standard deviations above/below league average (15 team bins)


## Oakland Athletics Exceed Expectations

Wins above/below payroll expectation, by season


[^0]BASED ON DATA FROM ESPN, BASEBALL PROSPECTUS, BASEBALL-REFERENCE.COM

## a. Batting average b. On-base percentage

## ? <br> 20

High Cost to acquire Low
cost to
acquire

## $\uparrow$ <br> 


$?$
5

# a. Latest Agile Framework a 

b. Multi-team impacts


Escaped defects? Dependency Mgmt?

Low Cost to fix

## Delivery Impact

Baseball goal: Win more games Software goal: Deliver more value

## Predictably deliver <br> more value <br> to customers



## PICKING VALUABLE METRICS

## The only metrics that

 entrepreneurs should invest energy in collecting are those that help them make decisions. Unfortunately, the majority of data available in off-the-shelf analytics packages are what I call Vanity Metrics. They might make you feel good, but they don't offer clear guidance for what to do.by Eric Rises,

## Predictive Power and Better Decisions

- Observing historical data (metrics) may be interesting, but the predictive power of historical data should be the focus
- If a metric doesn't offer predictive power, then capturing that metric is waste
- Decisions based on historical data are predictions
- These decisions have un-certainty
- We can (and should) compare the eventual reality against our predictions and learn


## Good Metrics

- Lead to decisions
- Within teams' influence
- Gaming leads to "good"
- Have a credible story
- Are linked to strategy
- Trend or distribution based
- Leading indicators


## Bad Metrics

- Just convenient to capture
- Linked to reputation
- Gaming leads to "bad"
- Just to change "my" behavior
- Don't link to strategy
- People targeting
- Trailing indicators

Google for "Seven Deadly Sins of Agile Metrics" by Larry Maccherone for more ideas on good and bad metrics.

## Balanced and Valuable Metrics

1. Cost of Delay (\$)
2. Alignment to Strategy
3. Number of Experiments
4. Throughput / velocity
5. Key person dependency score
6. Risk uncertainty

7. Customer Impacting Defect Rate
8. Production Releases without rollback
9. Process Experimentation Rate
(\# improvement / total stories per sprint)

|  | Sprint 1 | Sprint 2 | Sprint 3 | Sprint 4 | Sprint 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Velocity | $\mathbf{1 6}$ pts | $\mathbf{7 2}$ pts | $\mathbf{2 1}$ pts | $\mathbf{1 9}$ pts | $\mathbf{3 7}$ pts |
| Throughput | $\mathbf{7}$ cards | $\mathbf{9}$ cards | $\mathbf{9}$ cards | $\mathbf{9}$ cards | $\mathbf{7}$ cards | Velocity: 16-72 pts, Throughput: 8 +/- 1




## US spending on science, space, and technology

 correlates with
## Suicides by hanging, strangulation and suffocation




## Leading Indicators

## Correlation != Causation



- Criteria for causality
- The cause precedes the effect in sequence
- The cause and effect are empirically correlated and have a plausible interaction
- The correlations is not spurious (short period)

Sources: Modified by me for brevity based on: Kan,2003 pp80 and Babbie, 1986

## Number of films Nicolas Cage appeared in

## Female Editors on Harvard Law Review





## MODELING - A QUICK INTRO

23

You need the model to spot when reality diverges from expectation

Once the model reflects reality (showing predictive power) you can run experiments on the model before real-life


PS. Scrumsim and Kanbansim is free, focusedobjective.com 25

Cost to Develop
Planned / Due Date
Actual Date A Actual Date B Actual Date C
Staff A : \$\$\$\$\$\$\$\$


Staff B : \$\$
Staff C : \$



## Sensitivity Testing



Alter one factor in a model at a time and forecast. Order the factors from most impacting to the least on forecast outcome.


Moneyball: The Art of Winning an Unfair Game
the signal and thy and the noise an
the noise and the noise and the nol why so many and predictions failbut some don't and the noise ant the noise and the nate silver noise

The Signal and the Noise: Why So Many Predictions Fail but Some Don't


THE POWER TO PREDICT WHO WILL CLICK, BUY, LIE, OR DIE
ERIC Siegel

Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die



## FUN WITH UNCERTAINTY

## How Many Samples Are Required to Determine Range?



33

Actual
Maximum
Q. On average, what is the chance of the $4^{\text {th }}$ sample being between the range seen after 3 random samples?
(no duplicates, uniform distribution)

Highest
sample so far


Actual
Minimum
Q. On average, what is the chance of the $4^{\text {th }}$ sample being between the

Actual
Maximum

Highest
sample so far
 range seen after 3 random samples?
(no duplicates, uniform distribution)
$25 \%$ chance higher than previous highest seen

?

$25 \%$ chance lower than
previous lowest seen

Actual
Minimum
Q. On average, what is the chance of the $4^{\text {th }}$ sample being between the

Actual
Maximum

Highest
sample so far
 range seen after 3 random samples? (no duplicates, uniform distribution)
$25 \%$ chance higher than previous highest seen

?


$$
\begin{aligned}
& \text { A. } 50 \% \\
& \%=1-(1 / n-1)
\end{aligned}
$$

$25 \%$ chance lower than
previous lowest seen
Q. On average, what is the chance of the $12^{\text {th }}$ sample being between the

Actual
Maximum
 range seen after 11 random samples? (no duplicates, uniform distribution)

5\% chance higher than previous highest seen

5\% chance lower than previous lowest seen
Actual

## Rules of Thumb

- " $n$ " = number of prior samples
- A calculates \% chance next sample in previous range
- B is an approximation for low range discrete values

| $n$ | A <br> $(n-1) /(n+1)$ | $1 /(n-1)$ |
| :---: | :---: | :---: |
| 2 | $33 \%$ | $0 \%$ |
| 3 | $50 \%$ | $50 \%$ |
| 4 | $60 \%$ | $67 \%$ |
| 5 | $67 \%$ | $75 \%$ |
| 6 | $71 \%$ | $80 \%$ |
| 7 | $75 \%$ | $83 \%$ |
| 8 | $78 \%$ | $86 \%$ |
| 9 | $80 \%$ | $88 \%$ |
| 10 | $82 \%$ | $89 \%$ |
| 11 | $83 \%$ | $90 \%$ |
| 12 | $85 \%$ | $91 \%$ |
| 13 | $86 \%$ | $92 \%$ |
| 14 | $87 \%$ | $92 \%$ |
| 15 | $88 \%$ | $93 \%$ |
| 16 | $88 \%$ | $93 \%$ |
| 17 | $89 \%$ | $94 \%$ |
| 18 | $89 \%$ | $94 \%$ |
| 19 | $90 \%$ | $94 \%$ |
| 20 | $90 \%$ | $95 \%$ |
| 21 | $91 \%$ | $95 \%$ |
| 22 | $91 \%$ | $95 \%$ |
| 23 | $92 \%$ | $95 \%$ |
| 24 | $92 \%$ | $96 \%$ |
| 25 | $92 \%$ | $96 \%$ |
| 26 | $93 \%$ | $96 \%$ |
| 27 | $93 \%$ | $96 \%$ |
| 28 | $93 \%$ | $96 \%$ |
| 29 | $93 \%$ | $96 \%$ |
| 30 | $94 \%$ | $97 \%$ |
| 12 |  |  |

## Why do I need more samples?

- Samples aren't random or independent
- Some samples are erroneous and dropped
- Uneven density of value distribution
- Most common: Fewer expected high values means more samples needed to find the upper values
- While detecting the range requires few estimates, detecting the shape needs many


Do we have to break down EVERY epic to estimate story counts?

## CASE STUDY: ESTIMATING TOTAL STORY COUNT

Problem: Getting a high level time and cost estimate for proposed business strategy time and costs

Approach: Randomly sample epics from the 328 proposed and perform story breakdown.
Then use throughput history to estimate time and costs

## Sample with replacement

Remember to put the piece of paper back in after each draw!


## Trial 1 Trial 2 Trial 100



## Epic Breakdown - Sample Count

Facilitated by well known consulting company, team performed story breakdown (counts) of epics. 48 (out of 328) epics were analyzed.

## Actual Sum

262

| Process | $50 \%$ <br> Cl | $75 \%$ <br> Cl | $95 \%$ <br> Cl |
| :--- | :--- | :--- | :--- |
| MC 48 samples | 261 | 282 | 315 |
| MC 24 samples | 236 | 257 | 292 |
| MC 12 samples | 223 | 239 | 266 |
| MC 6 samples | 232 | 247 | 268 |



## Example: Spreadsheet Analysis



## CASE STUDY: TEAM THROUGHPUT PLANNING AND FORECASTING

Problem: Teams unsure how to plan team constraints during cross-team planning. Teams spend considerable time estimating proposed work.

Approach: Give the teams a way to forecast throughput based on historical performance.

52


Evidence of data quality is well formed distribution shape
53


## Example: Throughput Forecasting Tool (OK, its just a spreadsheet)

## Work Item Throughput Forecasting

## Step 1: Choose your team - all analysis is performed on the historical work item completion rate per

Team 3 -- Tip: You must set this FIRST! This is the team you will be performing analysis on!

## How many weeks will it take Team 3 to complete a number of Work Items?

Use this table to see how many work items your team will complete in various weeks. The first column ( $50 \%, 75 \%, 85 \%$ ) is how con amount of items in the given period based on variability of your teams prior throughput completion rate performance.

|  | 4 weeks | 8 weeks | 12 weeks | 16 weeks | 20 weeks | 24 weeks | 28 weeks | 32 weeks | 36 weeks | 40 w |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85\% | 12 | 28 | 45 | 63 | 80 | 98 | 115 | 133 | 152 | 16 |
| 75\% | 14 | 31 | 49 | 67 | 85 | 103 | 120 | 138 | 157 | 17 |
| 50\% | 18 | 37 | 56 | 75 | 92 | 112 | 131 | 149 | 168 | 18 |
|  |  |  |  |  |  |  |  |  |  |  |
| Confiden Level of f |  |  | Forecasted nu items comple | of work 12 weeks |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Or, How many work items will be completed by Team 3 in a specified number of weeks? |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | RESULT:Forecast Total Completed Work Items in 12 week |  |  |  |  |  |
| Number of weeks |  | 12 | (weeks) |  | 85\% | 37 | <--- Tip: This is your forecasted \# wol |  |  |  |
| Reserve capacity (\%) * |  | 20 | (percent) |  | 75\% | 39 |  | You can enter other confi |  |  |
|  |  |  |  |  | 50\% | 44 |  |  |  |  |



| FILE |  | HOME | $6 \cdots$ | 3. | F |  |  | Throughput Forecasting Tool v1－Excel |  |  |  |  |  | $?$ ？ |  |  | $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | INSERT | PAGE LAY | FORMU | LAS | DATA | REVIEW | VIEW | DEVE | PER AD |  | LOA | EST PO | ERPIVO | TEAM Tro | g．．． | $\ddot{\sim}$ |
| Q4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － | A |  |  | B | C | D | E | E | F |  | G | H | I |  | J | K | L | M | N |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  | Avg |  | Max | 5\％ |  | 10\％ | 25\％ |  | 50\％ | 75\％ |  | 80\％ | 85\％ | 90\％ | 95\％ | Min |  |
| 3 |  |  | 45.288 | 74 | 59.2 |  | 56 | 50.4 |  | 44.8 | 39.8 |  | 37.6 | 36 | 34.4 | 32 | 27.2 |  |
| 4 |  | PLEASE DO NOT TOUCH THIS SHEET，THIS IS FOR CALCULATION ONLY！ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | Trial \＃ | Sum n |  |  | 2 | 3 |  | 4 | 5 |  | 6 | 7 |  | 8 | 9 | 10 | 11 | 12 |
| 6 | 1 | 38.4 |  | 6.4 | 1.6 |  | 6.4 | 3.2 |  | 1.6 | 2.4 |  | 1.6 | 2.4 | 2.4 | 4 | 4 | 2.4 |
| 7 |  | 2 | 34.4 | 4 | 2.4 |  | 1.6 | 4 |  | 5.6 | 1.6 |  | 1.6 | 1.6 | 4 | 1.6 | 4.8 | 1.6 |
| 8 | 3 | 3 | 58.4 | 6.4 | 4 |  | 6.4 | 6.4 |  | 2.4 | 4 |  | 3.2 | 0.8 | 6.4 | 9.6 | 6.4 | 2.4 |
| 9 | 4 | 4 | 49.6 | 2.4 | 9.6 |  | 6.4 | 4 |  | 0.8 | 3.2 |  | 1.6 | 1.6 | 4.8 | 1.6 | 4 | 9.6 |
| 10 | 5 | 5 | 48.8 | 9.6 | 0.8 |  | 5.6 | 3.2 |  | 2.4 | 4 |  | 4 | 4 | 3.2 | 1.6 | 0.8 | 9.6 |
| 11 | 6 | 6 | 58.4 | 6.4 | 5.6 |  | 2.4 | 4 |  | 1.6 | 0.8 |  | 9.6 | 4.8 | 5.6 | 1.6 | 9.6 | 6.4 |
| 12 | 7 | 7 | 47.2 | 4 | 0.8 |  | 2.4 | 6.4 |  | 3.2 | 4.8 |  | 4 | 4.8 | 4 | 6.4 | 0.8 | 5.6 |
| 13 | 8 | 8 | 44.8 | 1.6 | 0.8 |  | 0.8 | 9.6 |  | 4.8 | 9.6 |  | 6.4 | 2.4 | 1.6 | 4 | 1.6 | 1.6 |
| 14 | 9 | 9 | 45.6 | 4 | 2.4 |  | 1.6 | 1.6 |  | 4.8 | 9.6 |  | 6.4 | 2.4 | 3.2 | 4 | 1.6 | 4 |
| 15 | 10 | 0 | 32 | 1.6 | 0.8 |  | 4 | 1.6 |  | 1.6 | 6.4 |  | 3.2 | 3.2 | 4 | 2.4 | 1.6 | 1.6 |
| 16 | 11 |  | 48.8 | 4.8 | 4.8 |  | 4 | 9.6 |  | 3.2 | 2.4 |  | 4 | 4 | 6.4 | 2.4 | 2.4 | 0.8 |
| 17 | 12 |  | 49.6 | 5.6 | 5.6 |  | 6.4 | 4 |  | 6.4 | 1.6 |  | 3.2 | 4 | 4.8 | 1.6 | 3.2 | 3.2 |
| 18 | 13 |  | 52 | 4 | 2.4 |  | 9.6 | 9.6 |  | 6.4 | 3.2 |  | 2.4 | 3.2 | 1.6 | 0.8 | 3.2 | 5.6 |
| 19 | 14 |  | 44 | 6.4 | 9.6 |  | 2.4 | 1.6 |  | 4 | 2.4 |  | 4 | 3.2 | 4 | 0.8 | 3.2 | 2.4 |
| 20 | 15 |  | 36 | 2.4 | 0.8 |  | 4 | 1.6 |  | 5.6 | 0.8 |  | 1.6 | 5.6 | 2.4 | 4 | 1.6 | 5.6 |
| 21 | 16 |  | 44 | 3.2 | 4.8 |  | 4 | 0.8 |  | 9.6 | 5.6 |  | 2.4 | 2.4 | 2.4 | 5.6 | 1.6 | 1.6 |
| 22 | 17 | － 36 |  | 0.8 | 1.6 |  | 2.4 | 6.4 |  | 6.4 | 1.6 |  | 2.4 | 4 | 3.2 | 3.2 | 2.4 | 1.6 |
| 22 | 18 | ก） 1 |  | 31 | 2.1 |  | 3.2 | 6.4 |  | 21 | 1.6 | 0.6 |  | 6.4 | 16 | 16 | 1.6 | 2 A |
|  | 1 ＋． | ．．． | Throughput Monte Carlo |  |  | Throughput Monte Carlo Weeks |  |  |  |  |  | － | 4］ |  |  |  |  | $\bullet$ |

## Throughput / week Trend



## Please, please, Capture context

| Year | Week | Team | Throughput | Context |
| :--- | :--- | :--- | :--- | :--- |
| 2014 | 12 | Blue | 12 |  |
| 2014 | 13 | Blue | 2 | Moved offices |
| 2014 | 14 | Blue | 7 | No performance testing env. |
| 2014 | 15 | Blue | 11 |  |
| 2014 | 16 | Blue | 2 | Thanksgiving week |
| 2014 | 17 | Blue | 4 | Learning new javascript library |
|  |  |  |  |  |

# Context helps select the right samples for future forecasting 

## BETA



ADVANCED - I know this will be tough to understand but want to put it into the public for comment!

## PROCESS ADVICE BASED ON CYCLETIME DISTRIBUTION

## Flaw of averages



63

## Introducing - Weibull Distribution



Message: Don't use Standard Deviation, use Percentile 64

## Introducing - Weibull Distribution

 Shape parameter (how bulbous)

## Scale parameter ( $63 \%$ Values Below)

65


# Work Item Cycle Time or Lead Time Distribution Through the Ages 



Scale = 5
< 1 week

Scale = 15
~ 2 week sprint

Scale $=30$
~ 1 month


Lean, Few dependencies

- Higher work item count
- More granular work items
- Lower WIP
- Team Self Sufficient
- Internal Impediments
- Do: Automation
- Do: Task Efficiency


Sprint, Many dependencies

- Lower work item count
- Chunkier work items
- Higher WIP
- External Dependencies
- External Impediments
- Do: Collapse Teams
- Do: Impediment analysis


## Notes so I don't get death threats

- There possibly is no BETTER matrix position
- If some factors are immovable, so will the matrix position
- I don't know all the factors and causes and probably never will

Optimum Batch Size


Items per Batch
From "The Principles of Product Development Flows" by Donald G. Reinertsen. Celeritas Publishing: 2009. Copyright 2009, Donald G. Reinertsen


## Session Feedback

- Please provide feedback on this session!
- You can do so in 3 ways:

1. Visit this session on the Mobile App. Click Session Feedback.
2. Scan the unique QR Code for this session located at the front and back of the room.
3. Visit the unique URL for this session located at the front and back of the room.

- Thank you for providing your feedback $)$

Conference Special: Download the session slides, a free copy of our simulation software and a copy of this book in PDF format from http://bit.ly/agilesim
Focused Objective software risk solutions

FocusedObjective.com
@AgileSimulation

## Troy Magennis

troy.magennis@focusedobjective.com phone: 4252238097 skype:troy-magennis twitter: @t_magennis

73

## Contact Details

www.FocusedObjective.com<br>Download latest software, videos, presentations and articles on forecasting and applied predictive analytics<br>\section*{Troy.Magennis@focusedobjective.com}

My email address for all questions and comments

## @t_magennis

Twitter feed from Troy Magennis


## DEPENDENCY IMPACT

75

## What are the odds of nothing going wrong in a sequential process?

Average Flight Delay
By scheduled hour of departure



## Average Flight Delay

By cause and scheduled hour of departure


## Four people arrange a

 restaurant booking after workQ. What is the chance they arrive on-time to be seated?

| Person 1 | Person 2 | Person 3 | Person 4 |
| :--- | :--- | :--- | :--- |



## 1 in $2^{n}$ or <br> 1 in $2^{7}$ or <br> 1 in 128





## 5 dependencies 1 chance in 32

Probability Density Function

(1)

## Overfitting

- If training a model on historical data, risk is it only forecasts historical data correctly
- Some causes
- Samples not randomized
- Process changes over time, but samples from one era
- Samples sorted in some way and pulled from one end
- Samples not chosen with future "Context" in mind
- Events occur but samples prior to event used
- Environmental and seasonal disruptions ignored

Planned / Due Date

Actual Date


## 

Historical Story Lead Time Trend


Sum Random Numbers

|  | 25 | 31 | 19 |
| :---: | :---: | :---: | :---: |
|  | 11 | 43 | 12 |
|  | 29 | 65 | 24 |
|  | 43 | 45 | 27 |
|  | 34 | 8 | 21 |
|  | 26 | 7 | 3 |
|  | 31 | 34 | 9 |
|  | 45 | 73 | 20 |
|  | 22 | 54 | 23 |
|  | 27 | 48 | 29 |
| Sum: | 295 | 410 | 187 |

## Basic Cycle Time Forecast Monte Carlo Process

1. Gather historical story lead-times
2. Build a set of random numbers based on pattern
3. Sum a random number for each remaining story to build a single outcome
4. Repeat many times to find the likelihood (odds) to build a pattern of likelihood outcomes

Total Days $=\frac{\operatorname{Sum}^{\left(\text {Story }_{n} \times \text { Random }_{n}\right)}}{\text { Effort @t_magennis }}$


Days To Complete

## Correlation and Outliers

- Outliers a major factor on correlation
- Assume linear correlation, always scatterplot
- Calculations
- Pearson Correlation Co-efficient
- Spearman's Rank Order
- If range is large, this is a good candidate
- Least-squares Method
- Vulnerable to extreme values


## DID THE SUN JUST EXPLODE? <br> ( $T$ S NEHT, SO WERE NOT SURE.)



FREQUENTIST SIATISTICIAN:


BAYESIAN STATISTICAN:



[^0]:    OV FIUETHIRTYEIGHT

