
Applying Lean Concepts
to Plan-Driven Projects

www.construx.com
© 2007 Construx Software Builders, Inc.
All Rights Reserved.

VJ2.0



Software Development Best Practices 2

Executive Summary

A one size fits all approach is flawed
Lean applies only to “Agile” is a myth
All software teams need to continually 
ensure each activity they perform is 
optimized to promote value and 
eliminate waste



Software Development Best Practices 3

Purpose

Introduce you to applying lean thinking 
when circumstances require a more 
upfront planning approach

Identify the lean software development 
principles 

Provide examples illustrating using lean 
on plan-driven projects



Software Development Best Practices 4

Lean Principles

Build Value
Eliminate Waste
Build Integrity In
Amplify Learning
Localize Responsibility
Delay Commitment
Deliver Fast
Optimize the Whole

Adapted from Mary and Tom 
Poppendieck, Lean Software 
Development



Software Development Best Practices 5

Principles of Lean Software 
Development

Precisely specify the value of each project 
Identify the value stream for each project
Allow value to flow without interruptions
Let the customer pull value from the project 
team
Continuously pursue perfection

Ronald Mascitelli, How to Slash 
Waste and Boost Profits Through 
Lean Project Management



Eliminate Waste
on a Plan-Driven Project



Software Development Best Practices 7

What is Waste?

Anything the customer would not agree to pay 
for 

Ronald Mascitelli

Anything that does not add customer value
Mary and Tom Poppendieck,



Software Development Best Practices 8

What is Value?

Any activity or task is value-added if it 
transforms a new product design (or the 
essential deliverables needed to produce it) in 
such a way that the customer is both aware of 
it and willing to pay for it.

Ronald Mascitelli



Software Development Best Practices 9

Three Categories of Activities

Value
Enabler

Waste Lean’s goal
• Eliminate waste
• Reduce effort

spent on enablers
• Increase value

Value
Enabler

Leads to:
• Increased development

capacity
• Shorter schedules



Software Development Best Practices 10

Too Little or Too Much Leads to Waste

Includes non-value added 
information or tasks (aka 
Scrap)
Have to filter out the noise
Impedes efficiency, 
creativity, and innovation

Missing important tasks 
or information
Error-prone
Causes confusion, 
delays, and wasted work

Too Little Too Much



Software Development Best Practices 11

Identifying Waste

Review Value Stream
The sequence of activities that create project 
deliverables
What activities can be deleted? Streamlined? 
Beefed up?
Where are the bottlenecks?
Is there excessive wait-time?

Ask your team
They know!
Can you justify each activity and deliverable?



Software Development Best Practices 12

Common Sources of Waste

Too many projects
Unnecessary 
requirements
Random prioritization
Inefficient meetings & 
status reporting
Unrealistic schedules

Unnecessary 
documentation
Multi-tasking
Interruptions
Dysfunctional reviews
Excessive wait-states
Insufficient resources

What are common sources of 
waste on your projects?



Software Development Best Practices 13

Focus on the Bottlenecks

Know where your system's bottlenecks are, 
and make all other decisions revolve around 
their limitations.

Eliyahu Goldratt,
The Goal 



Software Development Best Practices 14

Avoid non-value added work

Every activity and deliverable (both what 
is done and how formally it is done) 
needs to do at least one of…

Help the project satisfy its charter
Help control a risk
Help maximize an asset

Otherwise, do it less formally or don’t do 
it at all



Build Integrity In
on a Plan-Driven Project



Software Development Best Practices 16

Quality as an Enabler

Focus on quality 
reduces effort and 
shortens schedules
40-50% of the effort on 
typical software projects 
is spent on avoidable 
rework
Every hour of upstream 
review saves up to ten 
hours of downstream 
work

≈95% 100%≈85%

Defects Removed 
Before Release

E
ffo

rt 
/ C

os
t /

 S
ch

ed
ul

e

Average 
Organization



Software Development Best Practices 17

Find Early—Fix Quickly

Requirements

Architecture

Construction

System test

Requirements

Architecture

Construction

Post-Release

Activity
in which a Defect

Is Introduced

Activity in Which a Defect Is Detected
(Phase That a Defect Is Corrected)

50 –
100X

Average
Cost to
Correct

Steve McConnell, Code 
Complete, 2nd Edition



Software Development Best Practices 18

Use a Combination of Techniques

Prevention
Culture
Professional 
development
Toolbox
Checklists and 
templates
Audits
Quality gates
Team structure
Continuous process 
improvement

Detection
Reviews
Testing
Simulations
Real Use
Automated
Mathematical



Amplify Learning
on a Plan-Driven Project



Software Development Best Practices 20

Interim Retrospectives

Meet with the team to discuss successes and 
failures observed during the milestone

What did we originally think would happen?
What actually did happen?
Based on what we know today, if we were able to 
start over

What would we want to be sure to do different?
What would we want to be sure to do the same?

Should the development process be changed 
for the next milestone?

Don't wait for an end-of-project retrospective



Software Development Best Practices 21

Leads to Continuous Improvement

Build the
Product Release

Set
the

Stage

Incorporate
Experiments &
Improvements

Gather
Data

Generate
Insights

Decide 
What
To Do

Close the
Retrospective

Continuous
Process

Improvement

Adapted from: Esther Derby and 
Diana Larsen, Agile Retrospectives 



Localize Responsibility
on a Plan-Driven Project



Software Development Best Practices 23

Empower teams

Clearly defined roles, responsibilities, 
and authorities
Push decision making as low as 
practical



Delay Commitment
on a Plan-Driven Project



Software Development Best Practices 25

Delaying Techniques

Focus on the process goals and intentions
What you need to do, not how
Make decisions based on coarser grained data

Stage Freezing
Freeze the broad-level essentials early
Freeze the details later

Last Responsible Moment
Ok not to know yet
But know when you got to know



Software Development Best Practices 26

Rolling Wave Planning

A progressive detailing of the project plan by 
providing the details of the work to be done 
in the current project phase  but also 
providing some preliminary description of 
work to be done in later project phases.

Gregory Githens, 
Rolling Wave Planning



Software Development Best Practices 27

Rolling Wave Planning 

Know where 
you’re headingDefine checkpoints to 

keep you on track

Drive within your 
headlights

Make mid-course 
corrections when 
needed



Software Development Best Practices 28

Get to “NO” Quickly

Complexity increases 
faster than the number 
of features
Fewer features will

Be easier to build
Easier to test
Have less risk

Scrub early and often
~ 64% of features are 
rarely or never used *
Best case – Scrub non-
value added projects 
before they even start!

Product
Complexity
(and effort)

Number of 
Features

Feature Interaction

* The Standish Group, 
Extreme Chaos



Deliver Fast
on a Plan-Driven Project



Software Development Best Practices 30

Frequent Releases

Define releases to be no longer than 6 weeks 
in duration

OK to define interim releases that are not released 
outside development
Forces frequent convergence
Can be used for coarse level planning – allows you 
to handle fine-grain dependencies at team level

Overall, a clear industry best practice, 
reduces numerous common risks—virtually 
always valuable



Optimize the Whole
on a Plan-Driven Project



Software Development Best Practices 32

Conscience Selection of Practices

Discovery Invention Implementation

Intellectual Phases

fo
cu

s

overlap

Rigor and 
formality of 
practices

Informal
light-weight

Formal 
heavy-weight

Waterfall Evolutionary

Lifecycle Selection



Software Development Best Practices 33

Adjust rigor of practices

Design Document
Informal Design Reviews

System Testing
Informal code reviews

Requirements Spec
Requirements Inspections
User Interface Prototype
Use Cases
Usability Studies
Incremental Delivery
More Senior Requirements 
Developers

Architecture and Detailed 
Design Docs
Design Inspections
Proof of Concept 
Prototypes
Outside Reviewers
Incremental Delivery
More Senior Designers

Automated Testing
Full Regression Testing
System Testing
Formal Code Inspections
Use of a Standard 
Integration Procedure
Daily Builds

Lo
w

 R
ig

or
H

ig
h 

R
ig

or

Discovery Invention Implementation

Requirements Spec
Informal Requirements 
Reviews



Software Development Best Practices 34

Myth: Overhead is Waste

Planned Work

Planned Work + Overhead
(Quality Reviews, Project 

Management, Unavoidable 
Rework, Corrective Activities) 

1 of 2

Realistic 
Outcome

Unplanned
Work

Unplanned Work
(Missing Deliverables, Missing Tasks, 
Avoidable Rework, Unforeseen Risks)

Typical 
Outcome

2 of 2

Reality:  It’s an Enabler



Software Development Best Practices 35

Summary

Our teams are a constrained resource
We must continually ensure each 
activity is optimized to promote value 
and eliminate waste
We only had time to provide examples

Hopefully they illustrated that Lean 
Principles applies to your plan driven 
projects



Any questions?



Software Development Best Practices 37

Closing thoughts

Don’t do something stupid just because it’s 
written down.

Attributed to: Frank Marshall,
Former VP of Engineering, CISCO 

Simple, clear purpose and principles give 
rise to complex intelligent behavior. Complex 
rules and regulations give rise to simple 
stupid behavior

Attributed to: Dee Hock, 
Founder and former CEO Visa

Credit Card Association



Software Development Best Practices 38

References

Barry Boehm & Richard Turner, Balancing Agility and Discipline: A 
Guide for the Perplexed (Addison-Wesley Professional, 2003) 
Barry Boehm & Victor Basili, “Software Defect Reduction Top-10 List”. 
Available at National Science Foundation, Center for Empirically Based 
Software Engineering. http://www.cebase.org
Esther Derby and Diana Larsen, Agile Retrospectives: Making Good 
Teams Great (Pragmatic Bookshelf, 2006)
Gregory Githens, “Rolling Wave Project Planning,” PMI Symposia 
Proceedings '98NPD Track. Available at: 
http://www.catalystpm.com/NP02.PDF



Software Development Best Practices 39

References

Eliyahu M. Goldratt & Jeff Cox The Goal: A Process of Ongoing 
Improvement (North River Press, 3rd Edition, 2004) 
Ronald Mascitelli, Building a Project-Driven Enterprise: How to Slash 
Waste and Boost Profits Through Lean Project Management (Project 
Management Institute, 2002)
Steve McConnell, Software Project Survival Guide (Microsoft Press, 
1998)
Mary and Tom Poppendieck,  Lean Software Development: An Agile 
Toolkit for Software Development Managers (Addison Wesley, 2003) 
Standish Group, “Extreme CHAOS”, 2001 Available at:  
http://www.standishgroup.com/sample_research/PDFpages/extreme_ch
aos.pdf



Training
Consulting
Tools

sales@construx.com
www.construx.com
+1 (425) 636-0100 



Extra Material



Software Development Best Practices 42

One size doesn’t fit all

Software engineering is a multi-faceted 
discipline using many techniques and 
tools 
A one size fits all approach is flawed

Doesn’t fit all end-product goals
Doesn’t fit all product-lifecycle goals
Doesn’t fit all project goals



Software Development Best Practices 43

Plan-Driven May Be Appropriate For 
Your Project

1
5

10
30

50

70
90

50
30

10

3
10

30
100

300

40

30

20

10

0

15

20

25

30

35

comfortdiscretionary 
funds

essential 
funds

single life

many lives

Personnel

Corporate Culture

Product Impact

Senior %Junior %

Requirements Change
% Change per month

% Enjoy/thrive on chaos,
entrepreneurial spiritTeam Size

Number of staff

Loss due to defects

More Agile Less Agile

Team Dispersion
Time, distance, cultural

high

medium

Adapted from Barry Boehm and 
Richard Turner, Balancing 
Agility and Discipline



Software Development Best Practices 44

Create Realistic Schedules

Software Project

Feedback

Effort Estimate

Corrective  Activities

• Change Requests
• Defects

• Risks
• Issues

Planned  Activities
• Deliverables
• Quality
• Rework

• PM Practices
• Technical Practices
• Staff Development

Schedule

Availability
• Professional

Development
• Meetings

• PTO
• Other

Projects

Capacity
• Staffing • Individual

Productivity

Schedule Estimate


