
Code Complete 2: Code Complete 2: 
Realities of Modern Realities of Modern 

Software ConstructionSoftware Construction

www.construx.comwww.construx.com

©© 20042004--20052005 Construx Software Builders, Inc.Construx Software Builders, Inc.
All Rights Reserved.All Rights Reserved.

ConstruxConstrux
Delivering Software Project SuccessDelivering Software Project Success™™

®





R



Really,Really



DA VINCI
CODE 
COMPLETE
Steve McConnell



This Time 
It’s Personal
This Time 
It’s Personal
This Time 
It’s Personal





consulting training software projects construx.com
8

Code Complete MissionCode Complete Mission

Attempt in 1993 was to capture lasting Attempt in 1993 was to capture lasting 
knowledge of software construction knowledge of software construction 
II’’ve asserted for many years that 95% of ve asserted for many years that 95% of 
the content of CC1 is still relevantthe content of CC1 is still relevant
Was this true?Was this true?



consulting training software projects construx.com
9

Scope of Work for CC2Scope of Work for CC2

Formally inspected entire first editionFormally inspected entire first edition
~500 programming examples updated to ~500 programming examples updated to 
Java, VB, C++Java, VB, C++
New chapters on Design, Classes, New chapters on Design, Classes, 
Defensive Programming, Collaborative Defensive Programming, Collaborative 
Construction, RefactoringConstruction, Refactoring
OO & web integrated throughoutOO & web integrated throughout
Further Reading updated throughoutFurther Reading updated throughout
Numerous complementary resources on Numerous complementary resources on 
companion website companion website cc2e.comcc2e.com



consulting training software projects construx.com
10

Overview of TalkOverview of Talk

The Worst Construction Ideas of the 1990s The Worst Construction Ideas of the 1990s 
and 2000sand 2000s
A Decade of Advances in Software A Decade of Advances in Software 
ConstructionConstruction
Ten Realities of Modern Software Ten Realities of Modern Software 
ConstructionConstruction



The Worst The Worst 
Construction Ideas of Construction Ideas of 
the 1990s and 2000sthe 1990s and 2000s



consulting training software projects construx.com
12

Some of the Worst Some of the Worst 
Construction Ideas of 1990sConstruction Ideas of 1990s

Code & fixCode & fix
““All design up frontAll design up front”” programmingprogramming
Design for speculative requirementsDesign for speculative requirements
Components will solve all our Components will solve all our 
construction problemsconstruction problems
Automatic programmingAutomatic programming
Uninformed use of the waterfall modelUninformed use of the waterfall model
Calling everything Calling everything ““object orientedobject oriented””



consulting training software projects construx.com
13

Some of the Worst Some of the Worst 
Construction Ideas of 2000sConstruction Ideas of 2000s

Code & fixCode & fix
““No design up frontNo design up front”” programmingprogramming
Planning to refactor laterPlanning to refactor later
Offshore outsourcing will solve all our Offshore outsourcing will solve all our 
construction problemsconstruction problems
Automatic programmingAutomatic programming
Uninformed use of Extreme Programming Uninformed use of Extreme Programming 
Calling everything Calling everything ““agileagile””



consulting training software projects construx.com
14

Worst Ideas, 1990s vs. 2000sWorst Ideas, 1990s vs. 2000s
1990s1990s

Code & fixCode & fix
““All design up frontAll design up front””
programmingprogramming
Design for speculative Design for speculative 
requirementsrequirements
Components will solve all Components will solve all 
our construction problemsour construction problems
Automatic programmingAutomatic programming
Uninformed use of the Uninformed use of the 
waterfall modelwaterfall model
Calling everything Calling everything ““object object 
orientedoriented””

2000s2000s
Code & fixCode & fix
““No design up frontNo design up front””
programmingprogramming
Planning to refactor laterPlanning to refactor later

Offshore outsourcing will Offshore outsourcing will 
solve all our problems solve all our problems 
Automatic programmingAutomatic programming
Uninformed use of Uninformed use of 
Extreme ProgrammingExtreme Programming
Calling everything Calling everything ““agileagile””



A Decade of Advances A Decade of Advances 
in Software in Software 

ConstructionConstruction



consulting training software projects construx.com
16

0. With the Theatrical Release 0. With the Theatrical Release 
of Lord of the Rings of Lord of the Rings ……

ALL companies can have servers named ALL companies can have servers named 
Gandalf and FrodoGandalf and Frodo



consulting training software projects construx.com
17

1. Design has Been Raised a 1. Design has Been Raised a 
LevelLevel

Programming has advanced through Programming has advanced through 
ability to create larger code aggregationsability to create larger code aggregations

StatementsStatements
RoutinesRoutines
ClassesClasses
PackagesPackages

Real legacy of OO might well be larger Real legacy of OO might well be larger 
aggregationsaggregations



consulting training software projects construx.com
18

2. Daily Build and Smoke Test2. Daily Build and Smoke Test

Institutionalizes incremental integrationInstitutionalizes incremental integration
Minimizes serious integration problems Minimizes serious integration problems 
that used to be commonthat used to be common
Lots of other benefits, tooLots of other benefits, too



consulting training software projects construx.com
19

3. Standard Libraries3. Standard Libraries

Good programmers have always used Good programmers have always used 
librarieslibraries
Now provided with languages (Java, C++, Now provided with languages (Java, C++, 
.NET).NET)



consulting training software projects construx.com
20

4. Visual Basic4. Visual Basic

Visual programming innovationVisual programming innovation
The first development environment to The first development environment to 
make widespread use of COTS make widespread use of COTS 
components components 
Only language to learn Only language to learn AdaAda’’ss syntax syntax 
lessons (case statements, control lessons (case statements, control 
statements, etc.)statements, etc.)
Highly integrated environmentHighly integrated environment



consulting training software projects construx.com
21

5. Open Source Software5. Open Source Software

Great aid to programmers during Great aid to programmers during 
developmentdevelopment
Reduced barriers to making code availableReduced barriers to making code available
Opportunity to learn from available codeOpportunity to learn from available code
Improved ability to Improved ability to readread codecode
Nice Nice ““communitycommunity”” of programmersof programmers



consulting training software projects construx.com
22

6. The Web for Research6. The Web for Research

FAQsFAQs
Discussion groupsDiscussion groups
SearchabilitySearchability in generalin general



consulting training software projects construx.com
23

7. Widespread Use of 7. Widespread Use of 
Incremental DevelopmentIncremental Development

Concepts were well known in 1990sConcepts were well known in 1990s
Practice is well established in 2000sPractice is well established in 2000s

From CC1:From CC1:
““The word The word ‘‘incrementalincremental’’ has never achieved the has never achieved the 
designer status of designer status of ‘‘structuredstructured’’ or or ‘‘objectobject--oriented,oriented,’’ so so 
no one has ever written a book on no one has ever written a book on ‘‘incremental incremental 
software engineering.software engineering.’’ ThatThat’’s too bad because the s too bad because the 
collection of techniques in such a book would be collection of techniques in such a book would be 
exceptionally potent.exceptionally potent.””



consulting training software projects construx.com
24

8. Test8. Test--First DevelopmentFirst Development

Shortens time to defect detectionShortens time to defect detection
Increases personal disciplineIncreases personal discipline
Complements daily build & smoke testComplements daily build & smoke test



consulting training software projects construx.com
25

9. Refactoring as a Discipline9. Refactoring as a Discipline

Provides a discipline for making changesProvides a discipline for making changes
Not so good as a total design strategyNot so good as a total design strategy

Good example of incrementalismGood example of incrementalism



consulting training software projects construx.com
26

10. Faster Computers10. Faster Computers

Compare CC1 performance benchmarks to Compare CC1 performance benchmarks to 
CC2 benchmarksCC2 benchmarks
Implications for optimization Implications for optimization 
Implications for programming languagesImplications for programming languages
Implications for developmentImplications for development



Ten Realities of Ten Realities of 
Modern Software Modern Software 

ConstructionConstruction



--11--
““ConstructionConstruction”” is a is a 
Legitimate TopicLegitimate Topic



consulting training software projects construx.com
29

Software Software ““ConstructionConstruction”” ––
Used to Look Like ThisUsed to Look Like This

 
Software 
Concept 

System 
Testing 

Architectural 
Design 

Requirements 
Analysis 

Detailed 
Design 

Coding and 
Debugging 



consulting training software projects construx.com
30

Software Software ““ConstructionConstruction”” ––
Now Looks Like ThisNow Looks Like This

Detailed
Design

Integration

Unit
Testing

Integration
Testing

Requirements
Development

Problem
Definition

Software
Architecture

System
Testing

Corrective
Maintenance

Construction
Planning

Coding and
Debugging



consulting training software projects construx.com
31

Distinction Between Activities Distinction Between Activities 
and Phasesand Phases

Activity != PhaseActivity != Phase
Talking about Talking about ““ConstructionConstruction”” as an as an 
activity does not imply a distinct phaseactivity does not imply a distinct phase
Differentiating between kinds of activities Differentiating between kinds of activities 
is extremely helpfulis extremely helpful



--22--
Individual Variation Is Individual Variation Is 

SignificantSignificant



consulting training software projects construx.com
33

Where do Variations Exist?Where do Variations Exist?

Researchers have found variations ranging from Researchers have found variations ranging from 
10x to 28x in:10x to 28x in:
Coding speedCoding speed
Debugging speedDebugging speed
DefectDefect--finding speedfinding speed
Percentage of defects foundPercentage of defects found
BadBad--fix injection ratefix injection rate
Design qualityDesign quality
Amount of code generated from a designAmount of code generated from a design
Etc.Etc.



consulting training software projects construx.com
34

Key Skills of an Expert Key Skills of an Expert 
ProgrammerProgrammer

DesigningDesigning
Flushing out errors and ambiguities in Flushing out errors and ambiguities in 
requirementsrequirements
Coding (naming, formatting, commenting)Coding (naming, formatting, commenting)
Reading & reviewing codeReading & reviewing code
IntegrationIntegration
DebuggingDebugging
Unit testingUnit testing
Teamwork Teamwork 
Using tools for all of the aboveUsing tools for all of the above



--33--
Personal Discipline Personal Discipline 

MattersMatters



consulting training software projects construx.com
36

Why Personal Discipline Why Personal Discipline 
MattersMatters

Being realistic about predicting the futureBeing realistic about predicting the future
Areas where discipline mattersAreas where discipline matters

RefactoringRefactoring
PrototypingPrototyping
OptimizationOptimization
MinimalMinimal--complexity designs specificallycomplexity designs specifically
Managing complexity generallyManaging complexity generally

EndpointsEndpoints——Discipline and CourageDiscipline and Courage
Humphrey on PSPHumphrey on PSP
Beck on Extreme ProgrammingBeck on Extreme Programming



--44--
A Focus on Simplicity A Focus on Simplicity 
Works Better than a Works Better than a 
Focus on ComplexityFocus on Complexity



consulting training software projects construx.com
38

Simplicity vs. ComplexitySimplicity vs. Complexity

Why do projects fail?Why do projects fail?
Focus on readFocus on read--time convenience, not time convenience, not 
writewrite--time conveniencetime convenience
YAGNI and design for speculative YAGNI and design for speculative 
requirementsrequirements



--55--
DefectDefect--Cost Increase Cost Increase 

is Alive and Wellis Alive and Well



consulting training software projects construx.com
40

Defect Cost IncreaseDefect Cost Increase

Requirements

Architecture

Construction

System testRequirements Architecture Construction Post-Release

Average
Cost to
Correct

Activity in which a
Defect Is
Introduced

Activity in Which a Defect Is Detected

Fix Here Don’t Wait 
to Fix Here



consulting training software projects construx.com
41

Decades of Research Support Decades of Research Support 
DefectDefect--Cost IncreaseCost Increase

Fagan, Michael E. 1976. Fagan, Michael E. 1976. ““Design and Code Inspections to Reduce Errors in Program Design and Code Inspections to Reduce Errors in Program 
Development.Development.”” IBM Systems JournalIBM Systems Journal 15, no. 3: 18215, no. 3: 182––211.211.
Humphrey, Watts S., Terry R. Snyder, and Ronald R. Willis. 1991.Humphrey, Watts S., Terry R. Snyder, and Ronald R. Willis. 1991. ““Software Process Software Process 
Improvement at Hughes Aircraft.Improvement at Hughes Aircraft.”” IEEE SoftwareIEEE Software 8, no. 4 (July): 118, no. 4 (July): 11––23.23.
Leffingwell, Dean, 1997. Leffingwell, Dean, 1997. ““Calculating the Return on Investment from More Effective Calculating the Return on Investment from More Effective 
Requirements Management,Requirements Management,”” American ProgrammerAmerican Programmer, 10(4):13, 10(4):13--16. 16. 
Willis, Ron R., et al, 1998. Willis, Ron R., et al, 1998. ““Hughes AircraftHughes Aircraft’’s Widespread Deployment of a Continuously s Widespread Deployment of a Continuously 
Improving Software Process,Improving Software Process,”” Software Engineering Institute/Carnegie Mellon University, Software Engineering Institute/Carnegie Mellon University, 
CMU/SEICMU/SEI--9898--TRTR--006, May 1998.006, May 1998.
Grady, Robert B. 1999. Grady, Robert B. 1999. ““An Economic Release Decision Model: Insights into Software An Economic Release Decision Model: Insights into Software 
Project Management.Project Management.”” In In Proceedings of the Applications of Software Measurement Proceedings of the Applications of Software Measurement 
ConferenceConference, 227, 227--239. Orange Park, FL: Software Quality Engineering. 239. Orange Park, FL: Software Quality Engineering. 
Shull, et al, 2002. Shull, et al, 2002. ““What We Have Learned About Fighting Defects,What We Have Learned About Fighting Defects,”” Proceedings, Metrics Proceedings, Metrics 
20022002. IEEE; pp. 249. IEEE; pp. 249--258.258.
Boehm, Barry and Richard Turner, 2004. Boehm, Barry and Richard Turner, 2004. Balancing Agility and Discipline: A Guide for the Balancing Agility and Discipline: A Guide for the 
PerplexedPerplexed, Boston, Mass.: Addison Wesley, 2004. , Boston, Mass.: Addison Wesley, 2004. 



--66--
Design Is ImportantDesign Is Important



consulting training software projects construx.com
43

Design AdviceDesign Advice——What has What has 
Changed in 10 Years?Changed in 10 Years?

In 1990s, design pundits wanted to dot In 1990s, design pundits wanted to dot 
every every ii and cross every and cross every tt before writing before writing 
any codeany code
In 2000s, design pundits say BDUF? In 2000s, design pundits say BDUF? 
YAGNI! YAGNI! 
There are lots of valid points on the There are lots of valid points on the ““no no 
designdesign””——““all designall design”” continuumcontinuum
The only 2 points guaranteed to be wrong The only 2 points guaranteed to be wrong 
are the two that have been advocated!are the two that have been advocated!



consulting training software projects construx.com
44

General Point: Extremes are General Point: Extremes are 
Usually Not ProductiveUsually Not Productive

All design up front vs. no design up frontAll design up front vs. no design up front
Entirely planned vs. entirely improvisedEntirely planned vs. entirely improvised
Pure iterative vs. straight sequentialPure iterative vs. straight sequential
All structure vs. all creativeAll structure vs. all creative
Document everything vs. document Document everything vs. document 
nothingnothing



--77--
Technology Waves Technology Waves 
Affect Construction Affect Construction 

PracticesPractices



consulting training software projects construx.com
46

Effect of Technology Waves on Effect of Technology Waves on 
ConstructionConstruction

Definition of Definition of ““technology wavetechnology wave””
EarlyEarly--wave characteristicswave characteristics
MatureMature--wave characteristicswave characteristics
LateLate--wave characteristicswave characteristics

Construction is affected by technologyConstruction is affected by technology——
more than I thought (more than I thought (dohdoh!)!)
Technology can be addressed in terms of Technology can be addressed in terms of 
general principlesgeneral principles



--88--
Incremental Incremental 

Approaches Work BestApproaches Work Best



consulting training software projects construx.com
48

Perspective on IncrementalismPerspective on Incrementalism

The pure waterfall model is not at all incremental The pure waterfall model is not at all incremental 
or iterativeor iterative——which is why it hasnwhich is why it hasn’’t worked very t worked very 
wellwell
Spiral development is highly incremental and Spiral development is highly incremental and 
iterative, which is part of why it does work welliterative, which is part of why it does work well
All projects will experience iteration at some All projects will experience iteration at some 
pointpoint
Think about Think about wherewhere and and when when in your project you in your project you 
will get your incrementalismwill get your incrementalism——cheaply, or cheaply, or 
expensively?expensively?



--99--
The Toolbox Metaphor The Toolbox Metaphor 

Continues to be Continues to be 
IlluminatingIlluminating



consulting training software projects construx.com
50

Toolbox MetaphorToolbox Metaphor

WhatWhat’’s best? Agile? XP? Scrum? DSDM? CMM? s best? Agile? XP? Scrum? DSDM? CMM? 
Toolbox explains thereToolbox explains there’’s no one right tool for s no one right tool for 
every jobevery job
Different industry segments will have different Different industry segments will have different 
tools and even different toolboxestools and even different toolboxes
WhatWhat’’s in the Software Engineering Toolbox? s in the Software Engineering Toolbox? 

Best practicesBest practices
Lifecycle modelsLifecycle models
Templates, checklists, patterns, examplesTemplates, checklists, patterns, examples
Software toolsSoftware tools



--1010--
SoftwareSoftware’’s Essential s Essential 

Tensions RemainTensions Remain



consulting training software projects construx.com
52

SoftwareSoftware’’s Essential Tensionss Essential Tensions

SoftwareSoftware’’s essential tensions have remained s essential tensions have remained 
unchanged for years:unchanged for years:

Rigid plans vs. ImprovisationRigid plans vs. Improvisation
Planning vs. Fortune TellingPlanning vs. Fortune Telling
Creativity vs. StructureCreativity vs. Structure
Discipline vs. FlexibilityDiscipline vs. Flexibility
Quantitative vs. QualitativeQuantitative vs. Qualitative
Process vs. ProductProcess vs. Product
Optimizing vs. Optimizing vs. SatisficingSatisficing

Balance wavers, but basic tensions are constantsBalance wavers, but basic tensions are constants



TALK 
COMPLETE

Steve McConnell



consulting training software projects construx.com
54

Training
Software Projects
Coaching & Consulting 

info@construx.com
www.construx.com

ConstruxConstrux
Delivering Software Project SuccessDelivering Software Project Success


