
11/11/18

1

Integrate Continuously

Five XP Practices for Agile Development

David Bernstein – To Be Agile (http://ToBeAgile.com)

http://ToBeAgile.com
info@ToBeAgile.com © Copyright 2012-2018 To Be Agile DB20180610

2

David Scott Bernstein

n Software developer since 1980

n Trained 8,000 developers since 1990

n Published author since 2015

n Website: http://ToBeAgile.com

http://tobeagile.com/
mailto:info@ToBeAgile.com
http://tobeagile.com/

11/11/18

2

3

Book – Beyond Legacy Code
http://ToBeAgile.com
info@ToBeAgile.com

© Copyright 2012-2018 To Be Agile DB20180408

http://BeyondLegacyCode.com

§ Nine practices to design and build
healthy code, plus some tips on
dealing with legacy code.

§ Discusses the value and reasoning
behind the technical practices, so
both managers and the team can get
on the same page as to their value.

§ It’s not a “How To” book, it’s a
“Why To” book.

4

Some Questions for You

• How many of your teams are doing
Scrum?

• More than a year? Two? Five? Seven?

• How many of your teams are doing XP?

• More than a year? Two? Five? Seven?

• Which technical practices?

• CI, TDD, refactoring, pairing? “This book shows readers how to use SCRUM,
an Agile software development process, to quickly
and seamlessly implement XP in their shop-while still
producing actual software. Using SCRUM and the Agile
process can virtually eliminate all downtime during an
XP implementation.”
“Agile Software Development with Scrum”

-- Ken Schwaber and Mike Beedle

?

http://tobeagile.com/
mailto:info@ToBeAgile.com
http://beyondlegacycode.com/

11/11/18

3

5

1. Say What, Why, and for Whom before How: With a Product Owner defining the next most
important features to build, the need for upfront requirements goes away.

2. Build in Small Batches: Building incrementally increases feedback, helps simplify the
construction of complex systems, and reduces risks.

3. Integrate Continuously: Sets up the infrastructure for incremental development.

4. Collaborate: Spiking, pairing, and swarming as a team to solve problems and radiate
knowledge throughout an organization.

5. Create CLEAN Code: Share standards and practices for building software with code qualities
that support testability.

6. Write the Test First: Drops the cost of building and maintaining software dramatically.

7. Specify Behaviors with Tests: Uses tests to define and document behaviors.

8. Implement the Design Last: Paying technical debt can pay back dividends in the short term as
well as the long term.

9. Refactor Legacy Code: Incorporate learning and pay off technical debt.

Nine Essential Practices

Integrate Continuously

Practice 3

11/11/18

4

The Heartbeat of a Project

Three Kinds of Done

11/11/18

5

Continuous Deployability

Automate the Build

11/11/18

6

Integrate Early and Often

Take the First Step

11/11/18

7

Collaborate

Practice 4

Extreme Programming

11/11/18

8

Communicate and Collaborate

Pair Program

11/11/18

9

Buddy Program

Spike, Swarm, and Mob

11/11/18

10

Time Box Unknowns

Code Reviews, Retrospectives

11/11/18

11

Amplify Learning

Be Mentoring and Mentored

11/11/18

12

Create CLEAN Code

We can infer good development principles and
practices through five key code qualities:

Cohesive
Loosely Coupled
Encapsulated
Assertive
Nonredundant

Practice 5

Quality Code is Cohesive

11/11/18

13

Quality Code is Loosely Coupled

Quality Code is Encapsulated

11/11/18

14

Quality Code is Assertive

Quality Code is Non-Redundant

11/11/18

15

Code Qualities Guide Us

Increase Quality Today…

11/11/18

16

Write the Test First

Practice 6

The Things We Call Tests

11/11/18

17

Quality Assurance

Write Good Tests

11/11/18

18

TDD Gives Rapid Feedback

TDD Supports Refactoring

11/11/18

19

Write Testable Code

TDD Can Fail

11/11/18

20

Introducing TDD to a Team

Become Test Infected

“Warning:
Promiscuous
pairing can lead
to becoming test
infected.”

11/11/18

21

Refactor Legacy Code

Practice 9

Investment or Debt?

11/11/18

22

Become a “Deadbeat”

When Code Needs to Change

11/11/18

23

Refactoring Techniques

Refactor to Accommodate Change

11/11/18

24

Refactor to the Open-Closed

Refactor to Support Changeability

11/11/18

25

Do it Right the Second Time

50

Thank You!

n We have just scratched the surface, to learn more:

– Read my blog: http://ToBeAgile.com/blog
– Sign up for my newsletter: http://ToBeAgile.com/signup

– Follow me on Twitter (@ToBeAgile)

– Read my book:
– Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of

Your Software (available from http://BeyondLegacyCode.com)

– Attend my one of my Certified Scrum Developer trainings
– See http://ToBeAgile.com/training for my public class schedule

– Or contact me to arrange a private class for your organization

– Visit http://ToBeAgile.com for more information

Please fill out your feedback forms!

http://tobeagile.com/blog
http://tobeagile.com/signup
http://beyondlegacycode.com/
http://tobeagile.com/training
http://tobeagile.com/

